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a ABSTRACT

. The asymptotic behavior of the systems Xn+1 = Xn + anb(Xn,gn)

;' +a o(X )y and dy = b(y)dt + va(t) o(y)dw is studied, where

o {wn} is i.i.d. Gaussian, {én} is a (correlated) bounded sequence of

"D

o random variables and a_ ~ A;/log(A;+n). Without {En}, such algorithms
‘E are versions of the 'simulated annealing' method for global optimization.
gj When the objective function values can only be sampled via Monte Carlo,
. the discrete algorithm is a combination of stochastic approximation and
L

. simulated annealing. Our forms are appropriate. The {wn} are the

-; 'annealing' variables, and {En} is the sampling noise. For large AO’
. a full asymptotic analysis is presented, via the theory of large deviations:
g

f Mean escape time (after arbitrary time n) from neighborhoods of stable
! sets of the algorithm, mean transition times (after arbitrary time n)

from a neighborhood of one stable set to another, approximate asymp-
totic invariant measures, and location of the values of {Xn} or y(*)

the case where Eb(x,£) = E{x) is the (negative) of a gradient of a

-
; function B(x), and application to global function minimization via Monte
1Y
v, Carlo methods.
’ Key words. Monte Carlo, stochastic approximation, large deviations,
> simulated annealing, global function optimization from noisy
L}
: samples
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1. Introduction

//1 L PR T ‘-“ 3 —
We study-the asymptotlc behavior of the-system [ o ’Zi( ERNG
IRERV RSN AIPRE AP ") s e e {))Mm (:,, A2 TR sl A/F“"jn; 1.t W/Mm‘ A Loa ) )
(1.1) Xn+1 = Xn + anb(xn,ﬁn) + and(xn)wn, X € R , o ;4 | bd::‘
e
where {En} is a sequence of bounded random variables, {wn} is a 7)‘ja%vbﬁﬁ5h

sequence of zero mean independent and identically distributed (1i.i.d.)
Gaussian random variables, the two sequences are mutually independent and
a = Ao/log(n+Al), Ao >0, A1 >1. The o(-) and b(:,E) are Lipschit:
continuous, uniformly in &, and o(:) 1is bounded.

Such stochastic approximation algorithms are a Monte-Carlo version
of the currently popular 'annealing' method for locating the global
minimum of a function with many minima [1]-[3]: For example, let B(.)
denote a continuously differentiable function and set Eb(x,En) = b(x)
4§x(x). Suppose that noise corrupted samples of b(x), namely b(x,E),
are available from an experiment or a simulation on a system whose 'mean'
performance is B(x) at parameter value x. Then the algorithm Yn*l =

Yn + anb(Yn,En) is a standard form of a stochastic approximation method
for locating a local zero of b(:) or local minimum of B(-) under
appropriate conditions on {an}. The O(x)¥ term might be added arti-
ficially, following the usual logic of the 'annealing' scheme, in order

to force the sequence to jump around until it eventually 'settles' near

a global minimum of B(:). When only random samples b(x,f) are avail-
able, the situation is much more complex than in the non-random sampling
case. It is important to allow the {En} to be correlated, since (a) manv
efficient Monte Carlo methods (e.g., antithetic variables) require cor-

related noise, or (b) simulations are often run on a continuously operating

system, where the noise is inherently correlated.
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The theory of large deviations [4], [S]), [7), provides the appropri-
ate methods, and allows us to obtain a fairly complete characterization
of the asymptotic location of and behavior of the {xn}.

If the rate of decrease of a is *faster' than 0(1/log n), then
(under broad condition) {Xn} will converge w.p.l, and not continue to
'try' to escape from the stable set of the algorithm in which it is
trapped. In general, if o(x) # I or b(x) = —E;(x) £ b(x,E) for all
£, the algorithm does not necessarily (asymptotically) spend most time
near a global minimum of B(.), but the theory tells us just where it
does spend most of its time. There are practical alterations of (1.1)
for which {Xn} would eventually spend most time near a global minimum,
and these are discussed in Section 5. One form of the alteration requires
a specific 'cyclic' correlation among the {Ei}.; Very similar results

hold for the diffusion

R

o(y)dw.

(1.2) dy = b(y)dt +

Section 2 defines a number of terms and results from the theory of
large deviations which are useful for the further formulation of our prob-
lem. In Section 3, we treat the mean {asymptotic) escape time of {Xn}
from a set containing a stable set for the algorithm (1.1). Such quanti-
ties are important in the study of any such algorithm, since they provide

useful information on the stability of the algorithm, convergences, etc.

In Section 4, we treat a global problem, where there are (possibly) many




stable and unstable sets for (1.1) (i.e., for the ODE x = Eb(x,E)). The
asymptotic formulas for the mean transition time between these sets is
obtained, as is the (conditional) transition distribution of a certain
chain associated with the asymptotic behavior - whose properties yield

the mean transition and sojourn times, 'near' invariant measures, etc.
Section 5 contains extensions: the form of the result for It0 equation
models, the case where —Slx) is obtained from a gradient of a potential
function, and applications to the problem of global minimization of a func-
tion via Monte Carlo methods, and estimates of the asymptotic measures for
{Xn} and y(-).

In the more standard works in 'simulated annealing' [1] to [3] the
objective function values are known exactly - and the algorithm can 'move'
by large steps. Here and in (8] the parameter set is not discrete and the
algorithm moves only in small steps. With this constraint, the various
algorithms are all quite similar - in that the transition probabilities
are close. Often moving by small steps makes sense - particularly when the
parameter set is not discrete. Of course, we allow sampling noise and/or
imprecise measurements. The results in [8] are special cases of the results
here.

Numerous variations are possible - with rather similar results, although
the proofs might involve somewhat more details. E.g., the o(Xn) can be
periodic. In the sampling noise case, this might make sense. The direction
of iteration of (1.1) can be chosen at random - or several (a random number)
steps can be taken in each direction. Approximations to Gaussian noise

{in} can be used - with results close to those obtained here.
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2. Definitions and Assumptions

In order to simplify part of the notation later on, we actuaily work
with slightly altered {wn}. We truncate y  so that anlwnl +0 w.p.l
but the truncation level goes to = as n + ». This can be done since

for each 6§ > 0

2,,22 _
Pla |y | > & > 0} < exp-6°/20"a; = vy,

for some 02 > 0, where Zyn < o, In calculating the action functionals
below we can use either wn or their truncated version, and then take
limits. The result is the same. The procedure is unrestrictive, since
we are interested in the 'tails' of the {X } and related processes. We
continue to use the wn notation - but also assume that (eventually)
anlwn} is as small as desired.

For the case of independent and identically distributed {En}, define -

the H, H, and L functionals in the usual way in the theory of large

0
deviations: Let b(x) = Eb(x,§ ) and define

Hy(a,x) = log E exp at[b(x,E) - b(x) + o(x)y]

(2.1)

log E exp o'[b(x,E) - b(x)]+ a'o(x)Io' (x)a/2.

where I = cov y,

H(a,x) = a'b(x) + Hy (@, x)

L(B,x)

sup{a'B - H(a,x)] = supfa'(B - E(x)) - Ho(a,x)].
a a

lti;’ It is often convenient to treat L(*,*) as a function of R - b(x) and
LR -
oy
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Generally, we assume that there is a continuous function Hl(a,x),
differentiable in a, and a Lipschitz continuous b(.), such that for any

bounded stopping time v and associated o-algebra Bv = B(EiAv,

iav
1 viN
b(x) = lim S E b(x,E.)
N N Bv v+1 1
(2.2)
1 v+N-1 _
H,(a,x) = 1lim - log E_ exp a' z [b(x,E) - b(x)],
1 N B n
N oY) n=v

where the convergence is uniform in w and v and in (x,a) in any
compact set; for example, any finite state ergodic Markov chain {En}
will do, as will the 'cyclic' noise of Section 5, or any sufficiently
strongly (and stationary) mixing process. We now define

Ho(a,x) = a'o(x)Lo'"(x)a/2 + Hl(a,x)
and

H(a,x) = a'b(x) + Hy(a,x) .
For each T < =, define the action functional SX(T,¢) as equal

to = for ¢ not absolutely continuous, and otherwise

T

5, (T,$) = fo L(9(s),0(s))ds, (0) = x.

Let U(x) denote the set {B: L(B,x) < «}, with closure U(x).
U(-) 1is convex and upper semicontinuous (in the Hausdorff topology) in

that lim U(x_) € U(x). In the i.i.d. case
X *x n

. U(x) = b(x) + co[b(x,E) - b(x) + o(x)y¥] = B(x) + Uocx),

- . S S ST SRS .-t ST Tt
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where 0 1is the closed convex hull over the (a.s.) range of E, V.
Information on U(*) in the general case is in [6, Section 3] and in

{4,5]. The Uo(x) will be a set of 'control values' for the differential

equation

(2.3)

Uo(x) and (2.3) give approximations to the possible noise determined
paths of the continuous parameter interpolation of the {Xn}, with in-
terpolation intervals {an}. We always assume that U(-) 1is continu-
ous in the Hausdorff topology.

In the i.i.d {Ei} case, if there is a I > 0 such that
covib(x,&) - E(x) + o(x)y] = T >0, we say the system is non-degenerate.
If ffx) is singular for some x, then the case is said to be degenerate.

In general, let

The system is

the special form of the degenerate problem where le(x) = le(x) =
221(x) = 0, 22

a = (al,az), etc.)

1o0e T T, -
T O A N T
i, e dhinad, A

N N
g cov ] [b(E) - B+ 0w) = I > ()

i Catt o e e, "l I At~ p it ns i abu a0t gt o el BB e - ot B d- o0 2 |

.......

x = b(x) + u, u(t) € Uy (x(1)).

1

: [211(") L)
| 20 10

said to be non-degenerate if I(x) z_f'> 0. Consider

2(x) > 27 > 0. Then we can write (use x = (xl,xz),

xl,n+1 = Xl,n * anbl(xn)

X2,n+1 B XZ,n * anb2(xn’£n) * ano(xn)wn'
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o Hy(a,x) = & log E exp | a'[b(x,E;) - b(x) + a(x)y;],
‘O 1
1
and let H and HN denote the gradient and Hessian matrices (with
. N,a ,an
' respect to a), resp. Then HN(a,x) >0, HN,a(O’x) =0 and HN,aa(o’x) =
ZN(x). Let K denote an arbitrary compact set. Since HN(x,a) >
H(x,a) > 0 and HN(',x) is convex, in the non-degenerate case H(-,x)
fff is strictly convex in some neighborhood of a = 0 which does not depend
. on x, for x € K. This implies that there is a 61 > 0 such that for
';~ B in the Gl—neighborhood Ng (b(x)) and x € K, L(B,x) is uniformly
1
bounded also L(b(x),x) = 0, LB(F(x),x) =0 and L(-,x) is strictly
‘ convex in Nd (b(x)). Thus L(B,x) = o(lB-BIx)|). For the above special
! 1
.~ form of the degenerate case, L(8,x) = = unless Bl = Si(x). There is a
".:'\_: - _ _
S5 §,>0 (61 not depending on x in K) such that for x €K, B8, €
} = _
N N6 (bz(x)) and Bl = bl(x), L(B,x) 1is uniformly bounded, also,
o I
2 Ly (b(x),x) = 0 and L(Fl(x),-,x) is strictly convex for B8, €
- 2
~T, ' 3 e = R
& Ng, (B (x) and L(By (x),6,,%) o(]8,-b,(x)]).
o Define {XE} and x°(4) by
F. € _ E 3 €y,
o Xpe1 = X * €D(XLEL) + ed(Xpvy
- (2.95)
25 xE(t) = x5 on [ne,ne+e)
- n
[
:{3 A piecewise linear interpolation could also be used to define xe(-).
h- ..
L:ﬁ ' Under our conditions, mild alterations of the arguments in [4] can be
.-
‘ii . used to show that SX(T,¢) is an action functional for {x%(.)} in
77
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the sense that: for any T and any Borel set A (with interior A
and closure A) in C;[O,T], the space o< R'-valued continuous functions

on [0,T] with initial value x,

. . €
-inf, Sx(T,¢) < lim € log Px{x (-)€EA}

(2.6) oEA £

< 1im € log Px{xe(-) A} < -inf § (T,9).
€ $EA

For each fixed T, let ®:(T) = {¢: Sx(T,¢) < s}, a compact set [4].
Then for any 8§ > 0 and d > 0, there is an €, > 0 such that for

0

€ <€ [4] (d(+,*) denotes the appropriate distance)

0

(2.7) PIAx"(+), 85 (TN > 8} < exp-(s-d)/e.

The uniformity of convergence (conditional on X’Bv) in the defini-

tion (2.2) of H(a,x) has some consequences which will be quite
important in the sequel. First, it is convenient to introduce some ad-
ditional terminology. Let T denote a stopping time with respect to
the family of ©-algebras {B(wi,gi, i<t/e)} = {Be(t)}, and let B_(1)
denote the associated 'stopped' o-algebra. Let Px,Be(T) denote the

probability measure for xe(-), conditioned on BE(T) and on Xe(T) = X.

When using this terminology, it is only necessary that the x be in the

a.s. range of xE(T), and we always assume this. Equivalently, we can

assume that P is the conditional distribution for the process

x,B_ (1)
which is reset to value x at time T and then continues to evolve as
before. Then (2.6) and (2.7) can be replaced by (2.6'), (2.7'), where

the convergence in (2.6') and the bound in (2.7') are uniform in T, w

and in x- in any compact set.
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-inf, S_(T,$) < lim ¢ log P {x®(1+)€A)
(2.6") oen € *Pe(®
< Tim € log P {x®(1+-)€A} < -inf S_(T,¢),
€ x’Be(T) Yy X
(2.7 P {a(x"(1++),05(T)) > 8} < exp-(s-d)/e.

x,B_(1)

This result is discussed in [6] and follows from the calculations in [4].
Indeed, the convergence proofs in [4] for the unconditional form depends
only on the convergence in the definition (2.2), and the estimates and
convergence (2.6', 2.7') will be uniform in any parameter in which the

convergence in (2.2) will be uniform.
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3. The Escape Time Problem

Let K. denote a compact stable invariant set for

0

(3.1) x = b(x),

and G a bounded open set containing K_, with a piecewise differentiable

0,
boundary 9G and with G in the domain of attraction of Ko; i.e., all
trajectories starting in G converge to KO. For each n > 0, define
n -
0= X

{X:} and x"(-) by X and

n _.n n n
Xa1 = xk * an+kb(xk’gn+k) * an+ko(xk)wn+k

(3.2)
n n k-1 k n.n
x'(t) = X for t€ [120 a i izo an#i) z [tk’tk+1)

(3.2) is the actual process with which we work in order to study the tail

of the {Xn}. Set 1" = min{t: xn(t) £ G}. In this section, we will
compute the asymptotics of {t"} for x € G under the following ‘con-

trollability' condition:

A3.1. For each 6 > 0 there is a p-neighborhood Np(KO) of K0

and Gp > 0, Tp < o, such that for each x,y € Np(KO), there is a path

¢(-): 6(0) = x, ¢(T) =y where T <T  and S (T,0) <6.

The condition is not very restrictive, and holds in 'typical' cases.
It is a natural generalization of the usual non-degeneracy assump-
tion which is used in large deviations work with diffusion processes -

where the analog of (A3.1) always holds. For example, let b(x) = 0 in

K0 and let the problem be non-degenerate (e.g., let o(x)Ic'(x) > 0




T,

A1,

11

on K;). Then (A3.1) follows from L(B,x) = o(|B-B(x)|) (see

above 2.5).) Alternatively, assume non-degeneracy. For each y > 0

there is a TY < o such that the <y-neighborhood of the path of (3.1)

on [O’TY]’ which starts at any x € Ko, covers Ko. (A3.1) follows from
these facts and the fact that S(T,¢) = 0 for functions ¢(-) satis-

fying (3.1). 1In typical applications to global minimization by Monte

Carlo, (A3.1) and (3.3) below holds, since cov wn >0 and of(x) = identity
matrix.

Define

"

S(x,y) = ini {s(t,9):4(0) = x,¢(T) = y}

]

and, for x € G,

Sg(x) = inf S(x,y) = inf{S(T,9): ¢(0) = x,¢(T) € 3G}

y€9G ¢,T

S.(B) = inf S.(x).
G xEB 6

By (A3.1) and the fact that S(T,¢) = 0 if ¢(-) satisfies (3.1),

SG(x) is constant on K0 and SG(x) S_SG(KO) for x € G. The

S(-,+) and SG(-) are lower semicontinuous functions (this result does

not require (A3.1)) [4]. Also

S(x,y) = lim lim lim € log P {16 < T},
Too §+0 €0 x 0=

where T, = inf{t: x&(t) € NG(Y)}'

In Theorem 1, we will have use for the following auxiliary result.
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Lemma 3.1. Under (A3.1) and the other conditions assumed above, for

EalA . .

233 each y € G, S(x,y) (zresp., SG(x)) is continuous at each x € KO.

\".J -
‘;}i OQutline of proof: The proof uses the controllability condition to

construct 'nearly' optimal paths. Let S(x,y) < «. Otherwise, a similar

iy proof yields S(xn,y) >® oas X *X € KO. By the controllability (A3.1),
; N for x,x' € Ko, and any sequence X, * X, S(x,x') = 0, S(xn,x) + 0 and
Vit
" S(x,xn) + 0. Then the lemma follows from
<
o S(x,¥) < S(x_,X) + S(x,y)
"." n - n
5Y
- S(x,¥) £ S(x,x ) + S(x.,¥),
e -
i%; -S(x,xn) f_S(xn,y) - S(x,y) ﬁ_S(xn,x). Q.E.D.
Y Let Gp denote a p-neighborhood of G.
J"-l
‘O Theorem 1. Assume (A3.1) and the other conditions above, and suppose )
K that as p + 0
b
)' 3.3 S + S €K
:ﬁu (3.3) G (x) g(x), some x 0"
R p
u“-l
o
e Then, for large enough A/,
§
% 3.4 1i log E_T" = S_.(K €6
3 (3.4) r11man og E.T = Sp(Ky), X .
\._'ﬂ
1Hoh
L)
¢y Remark. The continuity condition (3.3) is not very restrictive.
o If it doesn't hold for G, it will hold for a small perturbation of G.
AN
%zj: It always holds if o(x)Eyy'o(x) is positive definite on 3G. Other
195
‘Q conditions guaranteeing it, based on the 'controllability' assumption
(A3.1), are in [6, Section 4]. It also holds for the particular replace-
Yo,

--------
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ment for G wused in Section 4 (Rr - v Nu (Ki)). The proof of Theorem 1
ieg "1

is an adaptation of that of Theorem 4.1 of [7].

Proof. Part 1. The asymptotic properties and result (3.4) will not

change if we redefine a as a;=a; = Ao, a = Ao/log n, for n> 1.
Thus, after time 1, we set A1 = 0. In order to obtain the lower and
upper bounds on the escape times which will give (3.4), we approximate
the {an} by a piecewise constant process. We will actually work only
with this approximation, but the general result will follow readily from
it., Fix o > 1 but close to 1. We divide the 'discrete' time into

sections {[l,nl), [nl,nz),...} such that the ratio of the a value

at the start of a section (an ) to that at the end (an } is roughly
k k+1
a. Thus (if n is not an integer, use any 'nearest' integer)
(3.5) n,_, =nd, n, >1.
) k+1 k' 1

For n € [nk,nk+1), k > 1, define

k
. a - K
b = Ao/log n, =g (Ao/log nl)/a .

We call [nk,nk+1) the kth section. In the (continuous parameter)

interpolated time scale, this section has length

k
A, n? (ng-1) y
(3.6) ek[nk+1—nk] = <log nl> X = AOAsexp[a log nl-k log a],
a

Ay = (1/1og nl)(n? - 1.

This interval is larger than Aoexp coak (for some o > 0) if k

is large enough. The 'interpolated interval' Ek[nk+1—nk] is callec




ﬂ:{
5
: 14
a
A8
b
2 the interpolated k-section.
Ay
4;: We now define the analog of (3.2) with piecewise constant coeffici-
‘$j ents. Define {ii} and §k(-) as follows. Yg = x and for each k
-
_ <k _ K k. <k <k
8 (3.7) Xe = X+ an[b(xn,gnkm) + "’(xn”’nkm]’
R
J* where ak = ¢, for the first (n,_ ,-n,) terms ak =€ for the next
L n k k+1 'k * “n k+1
(nk+2-nk+1) terms, etc. To define the piecewise constant continuous
:' parameter interpolation §k(-) of {Yﬁ}, we use interpolation intervals
:; {uﬁ}. Let B, (t) denote the minimal o-algebra measuring all the
* e
‘ data {Ei,wi} starting from time zero up to that used to calculate
18
3’ ?k(t).
k- =k €
o Define T, = min{t: X (*) € G}. Let T denote the escape time from
(A" -
- G for the process xe(-) introduced in (2.5). Then
1
\
. . .
L 3 -
- (3.8a) lim € log ExT = SG(KO), x € G.
N &
WS
y
’_\ ((3.8a) will be obtained as a by-product of the development below.) We
1
N will show that
.‘
y (3.8b) lim ek log Eka = SG(KO), x € G.
A& The theorem readily follows from this and the arbitrariness of «. The
2% key to the development is the fact that replacing € by €y in (3.8a)
:?i and taking limits as k » o yields (in the sense of logarithmic asvmp-
‘i: totic equivalence)
A
Ly, €k k
g EXT ~ exp(SG(Ko)a /AO), )
"

Pl
[ i)
L I
64 & 28 aa

'y

gﬁﬁ]
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{ .

;ﬂ and for large AO the ratio of the quantity in (3.6) to this expression,
zj namely

L%

W\

k

" (exp o )AO

% (3.9) Ni = X ,

::- exp(S;(Ky)a"/Aj)

R goes to infinity very fast as k -+ o,

-3 .

N Part 2. Assume SG(KO) < w, Otherwise a similar proof yields the
v .

‘?_ result. Fix d > 0. Choose 0 < ul < u2 < us, Tl, T2, T3, (T2 > TS)’

A h >0 and &§ >0 such that the following hold: (a) for any initial con-
< dition x € G - N, (KO), the path of (3.1) gets into N, (KO) by time
o 1

ff T1 and never leaves (KO) after that; (b) for each p01nt x € Eﬁ (KO)
N 2

i there is a path ¢"(») such that ¢7(0) = x, ¢%(t) ¢ G, = N, (6) (the
o h-neighborhood of G) for some t < T, and
& B

A X

o
-

'i (c) there is a path with cost < d/8 connecting any x,y € h (KO) in
M3

- time §_T2 - T3.

Y The requirement (c) can be satisfied owing to (A3.1). The require-
'3 ment (b) can be satisfied owing to the 'continuity' (3.3), and (a) can
54 be satisfied since KO is the only limit set in G (or in Gh’ for

|

Z small h) for (3.1).
=
:?: Part 3. Let Nk denote the number of intervals of lemgth T in
I the interpolated k-section. By (3.6), there is a c, >0 such that
'4 Nk > exp clak for large enough AO. We will next evaluate (3.10), arn
JI
W

1 upper bound for E Tk

W,

A

+

T : - Mt e . .4 B
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- -}
(3.10) ET < T § P_{t, > nT}
Let PB (t) denote the probability measure for §k(-), conditioned on
k
B (t). Until after (3.14) let nT < Ek(nk+1'nk)' Note that
(3.11) Px{rk>nT} = Ex[l - PBk(nT_T){Tk-(nT-T)gﬁ}]I{Tk>nT_T}.

We have (A and B are defined by the two events described in the middle

term of (3.12))for T = T1 + T2

{1, -(T-T) < T, + T}

B (nT-T) 1 {r >nT-T}

J 3 3 \
> P {x (+) goes to hu (Ko) and then stays in hu (KO),

B, (nT-T) ] 2

(3.12) all on [nT-T,nT-T+T;], then leaves G on [nT-T+TI,nT]}

starting in NUZ(K )}I{T >nT-T}

{an B}I{

P .
Bk(nT-T) Tk>nT—T}

We have

inf P -
wix(nT-Tyec Bk (0T-T)

for all w for large k. This follows from (2.7') together with the

fact that Sy(T,¢) = 0 if and only if ¢() satisfies (3.1), and the

fact that all trajectories of (3.1) starting in G stay in h (KO)

after time Tl' Then, for y € Nu (K
2

O) and large k, (2.6') y1e1ds
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. P {B}1
4:' Bk(nT-T+T1) {Tk>nT-T}
\:-
{ | 2 inf P i
< y,m:ik(nT-T+T1)=y€N (K.) Bk(nT T+T,)
Hy 0
v (3.13)
C —%
: o 10X a0 < R/ (g, snr-1)

OitiTg

]
o e,

—

> [exp - [Sg(Ky) + d/z]/ek]l{1k>nT—T}

" Combining the above estimates yields that (3.11) is bounded above

0 by

s:' I 1
& (3.14) Pl >nT)

A

EJ(1 - 5 exp-(S(Ky) + &2/ onroty

Define

Ny
[1 - exp - (SG(KO) + d/2)/€k] .

By

Now iterate (3.14) up to n: nT = ek(nk+1-nk), then use Ek+1 for the

A
- next Nk+1’ etc. Doing this and substituting into (3.10) yvields that
for large Kk,
Nk n
¥ Et, < T nZO [1 - exp - (Sg(K,) + d/7)/¢]
% N+l n
ﬁ + T8, nZO [1 - exp - (SG(KO) + d/2)/ek+1]
- ,
& "ke2 n
8 + T BB,y nZO [1 - exp - (Sg(Kg) + d/2) /g, 17 + =+
N

T L

In order to estimate the terms in the sum beyond the first, note that

4.

c A AE)
P .
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B, expSg(Ky) + d/2)/e )

< exp- [N exp-(S(Ky) + d/2)/e Jexp[Sg(Kp) + d/2) /e,

which (since Nm > exp ¢y o™ for some ¢, > 0 if m and A0 are

large) is a term of a summable series. Thus for large k and AO’

E Tk <T

x [1 - exp- (SG(KO) + d/2)/ek] + constant

OMS

(3.15)
< exp(S5(Ky) + d)/ey.

Part 4. For the rest of the proof we let {En} e mutually inde-

pendent. This is for notational convenience only. I: allows us to

avoid the notation associated with the conditioning used in (e.g.) (3.12)
and (3.13). In general, we work as in the last part by using appropriate
conditioning and taking sup or inf, as appropriate. In fact, the
proof of Theorem 2 in Sect?on 4 use: the 'full conditioning' argument.

We will need the following lemma, whose proof is only a slight modifica-
tion of that of Lemma 2.2 of [7, Chapter 4] or Lemma 1.9 of {7, Chapter 6]

and is omitted. The second part of the lemma will be used in Theorem 2

below (it does not assume mutual independence of {Ei}).

. Ler .a 2. For each small o > 0, there are ¢ > 0, T0 < oo, € >0,
] such that for € < e, and all y € G - Ny (Ky) and all T,,
0y € - -
3 Py{Tu > T,} < exp - c(T,-Ty)/e .

£ &

where

€ _ . € ,
Ty = inf{t: x (t) € G - NQ(KO)}.
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More generally, let T denote a stopping time and let K be compact but

not contain an entire limit set for (3.1). Define TE = inf{t:

x%(t+t) € K}. Then
3
py,BE(T){TK_T > T4} < exp - c(T4-T0)/€,

for all finite stopping times 1 and y € K and € < g,. (P

0

y,BE(T)
was defined above (2.6').)

We now proceed very similarly to [7, p. 125-6]. Since

k
[1 - exp - (S5(K) + d/2)/e )" + 0,

ne-1 8

N

=ty

and the contribution to the mean value of Ty from paths which do not

exit G before €xel is used is vanishingly small as k = «, in
calculating a lower bound on the escape time we can and will assume for
(3.7) that aﬁ E ek for all n (or, equivalently, work with xe(-),
. = = T
= - \ - - . | -
for € ek). Define F1 hus(KO) NUZ(KO)’ F2 NUI(KO) U (R -G)
and define the stopping times {ci,oi} by Py =0
=3 . 3K
o, = inf{t > p; X () € Fl},
. e
p; = inf{t > 0,y P X ()€ Fz}.

The only way for ;k(-) to jump from the exterior of Eﬁ (KO) into
3
Nu (KO) is if it is pushed there by a very large value of wn' But
2
this is ruled out by the comments made in the beginning of Section 2.
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For x € N (K

and any T4 < o,
|1

o)

p {x (p ) € (RF-6)} <max P {1, = <T,}
y€F y
(3.16)
+ Px{Tk =Py > T4}

By Lemma 2, for each M < «» there is a T4 < » such that the far right

hand term of (3.16) is less than exp-M/sk for large k.
Recall that we chose the My such that S(x',y') < d/4 for
x',y' € ﬁL (Ko). By the compactness (for each s,y) and upper semicon-

3
tinuity (in s,y) of the sets ¢y(t), there is a 61 > 0 (not depending

on y) such that the paths which start at y € h (Ko) and exit G
before T4 are at a distance of at least 61 from the set

y I .
¢S (K ) d/2(T4)' (The minimum value of Sy(T4,¢) for such an exiting

path must be at least SG(KO) - d/4.) Then it follows from (2.7) that

for y € F1

(3.17) Py{Tk < T4} < exp-[S;(Ky)-d) /g,

for large k. In fact by the just cited uppersemicontinuity and compact-
ness, we canwrite max P {T < T4} in (3.17). Then, for a large fixed

yEF1
M and all large k,

P {x (p)) € G} < exp- (Sg(Ky)-2d) /ey, x € N (K

)
PR

Define v = min{n: §*(on) ¢ G}. Then for x € N (KO))

N R T T T A T TP P R IR C PR AR B . e . . L
LIV TP TS W T T W TP . S NP I TP SO P R PO P . N PR L L T . Lo 1
e - -y L 2 R
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= p (XK N .
P lv>n} = P {x"(p,) € N, (K, all i<n}

1

— = —
EP {x"(p)) € Nul(KO)Ix (or 1) (yon-1)

v

. X =
inf P {x (p,) €N (K)}P_{v>n-1}
yeN, (k) 7 1 M 0TTx
1

> (1 - exp - (Sg(Kp) - 2d) /g

For each {ui}, there is a t, > 0 such that inf Ey(p1 - 00) >t

1
b4

Thus
o0
Exx © % ExI{vzp}(pn B on-l)

©

% ExI{vzp}(on - %h-1)

| v

Y P_{v>n}inf E_(p, - ©
1 X y y 'l

| v

o)

fv

(constant) exp(SG(KO) - 2d)/ek.

This, (3.15), and the arbitrariness of d yield (3.8b). Q.E.D.

Remark. The proof with use of coefficients u: = a0 follows

readily from the above proof and the fact that we can choose o > 1

arbitrarily close to 1. For all practical purposes, the 'piecewise

constant' uk can be used in lieu of the a .
n n+k
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4. Asymptotic (Large Time) Properties of {Xﬁ} .

In this section, we obtain results analogous to those in [7, Chap-
ter 6] for the {X;} and {xn(-)} of (3.2). Again, we use the 'intermediate’
processes {;k(')} with piecewise constant coefficients to obtain the
{1,...

sets, each of which is an invariant set for (3.1}, and

results. Let I = ,m} and let Kl,...,l(m denote a collection of

disjoint compact

such that U Ki contains all the limit sets for (3.1). If S(x,y) =0

1

X,y The collec-

for all in any set K, let that K be one of the Ki'

tion {Ki} contains all the stable (and unstable) sets for the al-
gorithms (1.1), (2.5) and (3.2), and it is of interest to study the

asymptotic statistics of the movement from a neighborhood of one of the

Ki to a neighborhood of another. This is particularly important for an
understanding of the use of (1.1) for global minimization (or 'near!'
minimization) by Monte Carlo.

We make some additional assumptions.

Ad4.1. The controllability assumption (A3.1) holds for each Xi’
i=1,...,m reEIacing KO there.

Define Si. = S(K,,K.,) = inf S(x,y). By (Ad4.1), S.. = S(x,y)

J 1 J xeKi,yeKj 1J
for any x € Ki and y € Kj and S(x,y) = 0 for x,y € Ki' Also,
by an argument like that of Lemma 1, S(x,y) 1is continuous in x,y, for
X,y € y Ki.
i
It is useful to be able to bound the paths xs(-),'in(-), etc. There

are several ways of doing this. Perhaps the simplest is to project them

back onto some (large) set Dy - if they ever leave D This idea involves

1




RS
A Aety B Y

-

Y
}_:
i . a number of new considerations and details. A reasonable alternative is
;fs to fix the dynamics such that for some compact set (a sphere, for example)
2%; Dl’ all paths remain in Dl' This is not a restriction in applications,
L since in the simulations we can always add a penalty function and choose
?;i o(x), or otherwise fix the dynamics for large le to guarantee bounded

i; paths. For simplicity assume

4 A4.2. There is a sphere D1 such that D1 contains ? Ki in its
fé’ interjor and o(x) >0 as x - aDl and the trajectories of xE(°),

1? x"(+) stav in D,. All paths of (3.1) starting in D; stay in D,.

j By (A4.2), we can assume that for small ¢ > 0, any §-optimal path connecting
. a small neighborhood of Ki with a small neighborhood of Ki does not leave

Dl' I.e., we can assume that for small & > 0, if ¢(+¢) 1is such that

¥ ¢(0) = x, #(T) = y, x € small neighborhood of Ki, y € small neighborhood
z of K, and §,(T,8) <S;; + 6, then ¢(t) €D, t < T.

j Let s be defined as in Theorem 1 but add (fixed henceforth) a

3¢ Uy > Mg with the {Nﬁ4(Ki)} disjoint; define g = Eﬁl(Ki) and
:;E I = ﬁﬁs(Ki) - Nuz(Ki)' The natural analog of the scheme in [7, Chapter 6]
K.~ for getting the asymptotics of {x"(-)} or {ik(-)} involves estimating
t; the probability of the process going from g to Fi and then to g5

f j # i, and then calculating the mean times via the particular formulas

g developed in [7] involving products of the probabilities of various chains
»?; connecting the {Fi,gj}. With a few modifications, the results carry over
{i to our case. We first reproduce some of the notation in [7], adapted to
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our case. The proofs here will be simpler than these in [7}, since the

set D in [7, Chapter 6] is replaced here by a set of the form

RF - U g., for some subset J < I, and the N (K.) are 'small' neigh-
j€J J H; )
borhoods.

Let J denote a subset of I with £ members where & < m. Define

85 by gy = .U 8- By slightly altering the Nu.(Kj) we can assume
i€J i

that the boundaries are as smooth as desired. A J-graph is defined to
be a set of m-f arrows {y>8} connecting points in I, where vy € I-J,
§ € 1 and there are no cycles, and each point in I-J has one and only
one arrow leaving it. G{J) denotes the collection of J-graphs. By
the symbol g € G(i =~ J), we mean a collection of m-f£-1 arrows
{y>8}, without cycles, where i € I-J, y € I-J, § € T and not containing

chains leading from i to J.

We also use the following definitions. Note that our S in the V

of {7]. Again, the notation is adapted from [7, Chapter 6]. Define

§i. = inf{S(T,4) : ¢(0) € K., o(T) €K., o(t) € U K, t<T)
j i ] s#i,j °
= o jif the above set is empty
W, = min Y s
T gee) (yvbeg ¥
(4.1)
My(K) = min 1 s

g€G(ia> J) (y+8)eg &

v "'1!

Pt NN N !
.

vt x

Let 13, Tk 3 and 13 denote the first entrance times into the
bl

%

X

T vV _T_T
N

set g3 for the xn(-), (+) and xe(-) processes, respectively.
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h. )
> Theorem 2. Under our conditions, for large Ao,

o : no_ L s €

y I:m a, log ExTJ lim EkEx log Tk,J lzm e log EXTJ
- (4.2)

' = WJ. - MJ(Ki),

3§

:3 uniformly for x in any small enough neighborhood of any Ki'

) Remark. If x is not very close to some Ki’ then the path tends
.; to a small neighborhood of some Ki 'very fast'., This fact and the
,3 theorem are enough to give us the relative asymptotic times that {Xn}
- spends in any set.

Y

- Proof: If the set G in Theorem 1 is replaced by R’ -

&)
i: g g;» then the 'continuity' condition (3.3) is not needed owing to
- (A4.2), which allows trajectories hitting 3G = 3g; to be extended into
the interior of g5 at 'small' extra cost, if ' is small. The

¢ above G also corresponds to the set D in [7, Chapter 6].

We will prove only the second two equalities of (4.2) for arbitrary

.'

2 a > 1 and under the condition that all Sij = S(Ki,Kj) < =, The equi-
f-

j valence of the first two terms follows from the calculations below.

vt

‘We proceed as follows. First show the middle equality in (4.2), then

:% work with xe(-). The proof requires Lemma 3 below (our analog of Lemma
%

-~ 2.1 of [7, Chapter 6]). With this lemma the proof can be readily com-
a2 pleted.

:Q The proof of the second equality in (4.1) is similar to that in

~ :

; Theorem 1. Fix d > 0. Choose T1 such that the paths of (3.1) start-
&) .

>

y

p:

B
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ing anywhere in D get to Ug. by time Tl and then stay there (for

1 ] .
the appropriate small ui). There is such a T1 since all the limit
sets of (3.1) are strictly inside U gi. There are T2 < © and -
< i -
ij, . . 1 ij ,
¢ °() € Cx[O,Tz], x €K, 1€1I-J, J€1I, such that ¢ °(t) € hul/z(Kj)

for some t < T2 and
ij
S, (Ty¢™) < 8,5+ ars,
S(x,x') < d/4 for (x,x') € ﬁ; (k;) and each i.
3

We can also suppose (see proof of Theorem 1) that

€ 1
pBE(T),x{x (1+T1) € g gi} >3 X € Dl'
Set T = Tl + T2 as in Theorem 1, and define S0 = @a§[sij5ij]+d. Using

l’J
an argument analogous to that in Theorem 1 (part 3) yields that the con-

tribution of the time that ak equals €n (for m > k) to the mean hitting

time Eka 3 is bounded above by the expression

»

N « n
m m m+1

? (1 - exp-Q;/e ) g g (1 - exp-Q; /ep, ),

where the Q? satisfy Q? 5-50/A0' Since N, > exp clum for some ¢, > 0
and large m (Nm is defined at the start of part 3 of proof of Theorem 1)

the above quantity is bounded by

exp([-(exp clam)exp(-Soam/Ao)]exp Soaml/A0

which (for large Ao) goes to zero faster than a geometric series as
m+ «, Also, as in Theorem 1, the contribution to the mean hitting tire
(Ex'rk J) of the part of the path beyond the first Nk interpolated T-

intervals is asvmptotically (as k =+ =) negligible. Thus the first equality
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2

Ry . of (4.2) holds and we need only work with xe(').

:% Define T %5 by Ty = 0 and

)

-} . . oEf.

- o = inf{t > T, X (1) € g Fi}

» . . €

- T = inf{t > O} X () € g gi}

o

e Let Zn = xe(Tn). In the following lemma, the 'conditional transition'

probabilities for {Zn} will be estimated.

: Lemma 3. Fix d > 0. There is an €0 > 0 such that for € < €5
4“ and all i,j and x €T, and n>1,

= (e ) (S . -

: (4.3) exp (Sij + d/4)/e < px,Be(Tn){zn+1 € gj, < exp (Sij d/4)/e.

T 3 ’ t

o (Px,Be(T) is defined above (2.6').)

Y

RS

- Proof: Fix i,j, i # j, and d > 0., There are small {ui}, uy > 0,
b

‘ 60 >0 and t, <= such that: for each x € g there is a path ¢:i(')
‘5 on [O,tl] connecting x to Ki’ then Ki to Kj and after leaving
"

ﬂ Nu (Ki) the distance of the path from gi and from g (s # i) is
" 2

ACY N X ~ .

> 60, and for which Sx(tl,¢ij) < Sij + d/4. There is an €5 > 0 such

[ S € - : ,
- that for ¢ < € and 51 = Emln(GO,ul) and x (Tn) = x € Ti we have
:A, PrB_(1 ){Z b €832P o (t ){ sup |x€(rn+t)-¢).(.(t)| < &}
Y x,B (1)) "n j %Be(Tn) “ocece, ij -
7 (4.4) ~

o > exp-(S.. + d/2)/¢c.

N ~ ij

5
" To get the reverse inequality, note that for any t, < =
K\

~

~
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P {z €g.} < sup P {z . €g.}
X’Be(Tn) n+l ] —'y€Ti,w y,Be(an) n+1 gJ
(4.5) < sup P {r > t,}
yEPi,w y’Be(on) n+l = 72
+ sup P {7 <t, Z € g.}.
YET, w y’Be(on) n+l = 72% “n+l J

By Lemma 2, for any M < = there is a t, < such that for small ¢

the first term on the right is < exp-M/e.
€ €
If x (on) = x € Ti and x (0n+t') € gj for some t' < t2 and if
€ .
X (cn+t) € KS, s # i,j for t < t', then for small {uj} there is a

62 > 0 such that

(4.6) sup ]xe(on*t) - ()] > 8,
Qgtﬁ;z
X

€95 _q/2(t
i]

2)
But for small ¢ and {uj}, (2.7') implies that

(4.7) P {event defined by (4.6)} < exp - (§ij-d)/e

X’Be(cn)

for all x € Fi and w (see also the related argument below (3.16)). The

far right hand term of (4.5) is bounded above by (4.7). This completes the

proof of the lemma since M 1is arbitrary.

We now return to the proof of the theorem. Let {Zi} denote the Zn}

process stopped on firts reaching gj. We have

-Tn)

(4.8) EtS = JEI
xJ o X {Ziig

E (1
J} Zn’Be(Tn) n+l
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o
(t ) For any d > 0, the argument of Theorem 1 yields that (for small fixed
. {uj}) there is a t, > 0 (depending perhaps on {uj}) such that for
small ¢, to i-Ex,BE(Tn)(Tn+1-Tn) < exp d/e, x € Fi (to get the r.h.s.
just let G decrease to a small neighborhood of K0 in Theorem 1). Thus,
'j it is enough to estimate (4.8) without the (Tn+1-Tn) component. In
" [7, Theorem 5.3 of Chapter 6], estimates which are the equivalent to those
! of Lemma 3 for the problem in [7] (those of Lemma 2.1 of Chapter 6 there)
f are used to show that
. lim € log § E_I =W, - M_(X.)
x . J J Jit?
\ € 0 {z €£g;}
: for x in a small neighborhood of Ki' Q.E.D.
vd
hi
.‘:
1
.
o
£
)
o
P
- 1
y
Cad
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5. Extensions and Comments

Cycling and asymptotic movement among the sets Ki' et J = {j}, and

fix i, where Ki and Kj are stable. The unstable sets Kl are
'transient!, in the sense that if KL is not stable then there is a

j # £ such that Slj = 0. Let Sij < Sik for all k # i,j. Then Theorem
2 implies that

. n . ,
];m anEx log Ty = Sij’ X € small neighborhood of ki,

and with a 'very high' probability, Kj will be the successor state to

Ki' This is almost obvious, since if (e.g.) the optimal graph in the cal-
culation of WJ involves a link i » k # j, then cutting that link and
replacing it by the 1 -+ j 1link further reduces the value of WJ. The

bb is treated similarly. As in [7, Chapter 6], the asvmptotic behavior
can be described via 'cycles'. There will be groups of the Ki such that
for a long time the process will cycle between states within a group, then
switch to another group and cycle between its states. At the next higher
level, there will be a cycling between these groups. The groups them-
selves can be formed into higher order groups, and cycling between these
described, etc. The notation is involved, but the procedure to get the
mean times for the transitions within any order of the hierarchy is

quite similar to that in [7, Chapter 6, Section 6], and is based only on

the analog of Theorem 2 and Lemma 3 for the problem in [7]. The proced-

ure yields the (asymptotic) mean time spent in the various states.

T A e e e
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I1to equations. Let

(5.1) dy = B(y)dt + a(o(y)dw, a (1) = Ay/log(teA)),
where w(+-) 1is a standard Rr~valued Wiener process. Define yn(-)
by

\ n_—n n, .
(5.2 dy =Dby dt + a(n+t)o(y )dw, t > 0.

If o(y)o'(y) 1is positive definite in the interior of D1 (see (A4.2)),

then the action functional for {yn(-)} is

T . _ - _
s (T.¢) = % fo (¢(s)-b(¢(s)) ' [o(¢(s))a'(¢(s))) 1(¢(5)-b(¢>(S)))ds

for ¢(-) absolutely continuous, and it equals infinity otherwise. 1In

general

T,
5,(T,9) = J L(6(5),6(s))ds
0

wvhere

L(B,x) = sup[a'(R-b(x)) - %a'c(x)o'(x)u].
o
The obvious analogs of Theorems 1, 2 and Lemma 3 hold with a

replaced by az(n) and € by 62.

Invariant measures for the y(-) of (1.2), (5.1). Let o(x)o'(x) be

bounded and uniformly positive definite in the interior of Dl and assume

-

that there are onlv a finite number of Ki and let all trajectories of

(3.1) starting in D1 stav in Dl' Let yc(-) denote the solution to

s A% 1

a

(1.2) with

1‘{‘-‘-‘."'/‘4

L s




s M
o |
L
' a(t) replaced by e. In [7, Chapter 6, Theorem 4.1 to 4.3) an expression .
LY

N for the invariant measure Ve of ye(~) is given (for small € > 0).

< -
ﬁiu Let v(t) denote the measure of y(t). Then v(t) - Va(t) -+ zero measure

' weakly. Thus, for large t, the measure of y(t) 1is very close to that of

:.3_-.

?{i: the stationary measure of ye(-) for e = a(t). We will not go through the
__;‘_.
‘J:: details, but they follow from the following considerations. Replace a(n+t)

by a piecewise constant approximation as in Theorem 1; i.e., use ?k(-), where

12{ we define (for any o > 1 and some Ty > 1) for each k

% _ ==k ~k

(5.3) dy” = b(y")dt + a(k,t)o(y )dw,

.i;.. n

o S« _ k -

b Tn+1 = Tn = T1 , h>1, € Ao/cx , TO 0
i a(k,t) = g on [0, Ty, ,-T,)

n_“-_‘ < . - .
o, €es1 ©OP [Tk+1 Tk’ Tk+2 Tk)’ etc.

Qk; The measure Ve in [7) is obtained from the invariant measure of

e the {Zn} process, where we define {Zn} here as in Theorem 2, but
using the Y (‘) of (5.3) instead of the {(xX(-)}. In fact if vz
?;} denotes the invariant measure of the {Z } for parameter e, and
.Qii g = Ug., then [7, (4.1) of Chapter 6]

-‘y‘\.'_\ 1
; v, (B) f Ve (dy)E f I, (y¢ (t))dt.
" y 0
u" g
At - -

o There is an Ap <= such that for Ay 2 A, the number of transitions of
A0y

- H

% §

{Zn} on the [Tk’Tk+1) interval increases rapidly enough as k » =

so that a 'near' steady state is reached before the end of the kth-

f Tty

interval, for large k. To see this, note the following: (a) all

e

-~

S..
1)

-

< ® and Sij < =; (b) for any d > 0, the maximum modulus of thé
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eigenvalues (with modulus less than unity) of the transition probabili-

ties of the chain {Zn} on the kth-interval isx <1 - exp-(So+d)/a2(k)
1 - exp - (So+d)ak/A0 for large k; (c) the length of the kth interval

is > exp clak for some c¢. > 0. Now, let Mk = exp czak for

1
0 < <, < € - Then
P{l;k (1. ,,-T.) <exp c o}

1 n+l n/ — 1

k
Mk exp[so+d]a /A0 X
< < exp - cqa

exp c,o

for some ¢y > 0 for large enough AO. Finally, note that

[1 - exp - (S +d)ok/A ]Mk < exp - ¢ ak,
0 ol = 4

for some ¢y 0 if A0 is large enough. The assertion concerning

convergence to the invariant measure follows from this.

The potential case. Let E(X) = —E;(x) and use the process

y(+) of (1.2). For simplicity, add a penalty function so that b(x)
points strictly inward on BDl for some sphere Dl' Let B(:) be con-
tinuously differentiable and assume that there are only a finite number
of the compact Ki introduced in Section 4, and that B(x) » « as |[x| > =,
Let o(x) = I except close to aDl. Since o(x)o'(x) = identity matrix
'inside' Dl’ (A4.1) holds.

For this case and x,y not close to Dl’ S(x,t) has a simple charac-

terization as

inf{sums of (positive) increases in B(#4(-)) as &(1)
. moves from x to 3,

* Recall S, = max[Sii,Sij] + d

0 s
1,3

[

TR oo
L e N e e T e
" 14“'.\_'1_.1 N




where the inf 1is over all differentiable paths connecting x and vy.
There is a similar definition for gij and Sij'
The same comments apply to the system (1.1) if b(x,§) = b(x). In

these cases the invariant measure Ve is concentrated on an arbitrarily

small neighborhood of the set of global minima of B(:) for small e [7].

Let vn denote the measure of Xn' Then we have that v(t) and v
are both ultimately concentrated near the set of global minima of B(+)

also. This includes the ‘annealing' result of [8].

*
Global functiom minimization via Monte Carlo. In many applications,

one can choose the noise En in b(Xn,En), and often there are choices
which greatly enhance the search. Let E(x) = -§¥(x), where §(-) and
o(+) satisfy the conditions in the above 'potential case' subsection.
Then both (A4.1) and (A4.2) hold. For each m, choose E?, i < m, such

* %k
that b(x,2)

~Bx(x,£), B(x) = EB(x,£) and also such that

m
L7 b, 2 B"x) > B(x)
m 1 1
uniformly for x in any compact set. Define ¢§ . = E@ for
km+1 i
k =0,1,... . We use
(5.4) X1 ° X+ anb(Xn,En) tavuv,

and the xn(-), Ek('), xg(‘) obtained from it, as in the previous sections.

With this scheme, the measure of Xn will ultimately be concentrated near
m
the set of global minimia of % ) B(-,E;).
1
Let ST(T,¢) be the action functional which corresponds to xn(-)

for given m. Then

* In Monte Carlo optimization by simulation.
**We observe the noise corrupted function B(x,Z) and its gradient, where
EB(x,7) = B{(x).
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T
S4(T.6) = f L7(3(s),0(s))ds,
0

where

L"(8,x) = supla'(B-B™(x)) + a'a/2].
a

Define §?., S?j in the analogous way, and let the superscript 'o' denote
the case where Em(x) is replaced by b(x). Theorem 2 and Lemma 3 hold

for each m. As m =+ o,

we have

(5.5) I;m lim anExTE = wg - Mj(xi),
where the limit is uniform for x in a small neighborhood of Ki‘ Thus,
for large enough m, as t -+ « the path {xn(-)} will spend almost
all of its time in a small neighborhood of the set of global minima of
B(-).

Numerous variations are possible. The E? can be chosen randorly,

but according to some good 'variance reduction' method with the 34

possibly dependent only within a 'cycle'. We could let the cycle length

k)

be m_ -+ ®, and use {Z.
n i

in the k-th cycle, etc.
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